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ABSTRACT

This paper presents a context-aware object proposal gener-
ation method for stereo images. Unlike existing methods
which mostly rely on image-based or depth features to gen-
erate object candidates, we propose to incorporate additional
geometric and high-level semantic context information into
the proposal generation. Our method starts from an initial
object proposal set, and encode objectness for each proposal
using three types of features , including a CNN feature, a
geometric feature computed from dense depth map, and a
semantic context feature from pixel-wise scene labeling. We
then train an efficient random forest classifier to re-rank the
initial proposals and a set of linear regressors to fine-tune the
location of each proposal. Experiments on the KITTI dataset
show our approach significantly improves the quality of the
initial proposals and achieves the state-of-the-art performance
using only a fraction of original object candidates.

Index Terms— Object proposal, object detection, scene
context, 3D scene.

1. INTRODUCTION

Generating object proposals has become a critical step in top-
performing object detection systems [1, 2, 3], which helps re-
duce the search space of detection to a relatively small num-
ber of interesting regions [4]. Such reduction improves not
only the computational efficiency but also the accuracy of de-
tection methods thanks to much fewer background clutters.
Early work of object proposal generation focuses on exploit-
ing local image cues, including object contour [5], edge den-
sity [6] and over-segmentation [7, 8, 9]. It usually requires
generating thousands of object proposals per image to achieve
high recall rate and accurate localization in detection. More
recently, learning-based methods have been proposed to re-
fine an initial set of proposals or to directly generate them
from images based on deep network features [10, 11, 12, 13].
In addition, 3D shape cues are learned from dense depth im-
ages for indoor scenes [14]. These new proposal generation
methods generally further improve the quality of object pro-
posals and lead to better object detection and localization per-
formance.

Despite the progress, most of existing proposal generation
approaches extract objectness cues from single modality and

focus on low- or mid-level features. On the other hand, the
spatial locations of object instances need to satisfy certain ge-
ometric/physical constraints and have close relations to their
neighboring object classes, such as supporting relation and
relative size. As such, incorporating geometric and semantic
context cues can benefit the proposal generation and further
improve their quality.

It has been widely acknowledged that global context plays
an important role in object detection and recognition [15].
Several types of contextual information have been explored in
the object detection literature, such as scene geometry [16],
co-occurring object classes [17], and semantic scene label-
ing [18]. However, little attention has been paid to exploit-
ing context information in the stage of object proposal gen-
eration. A notable exception is the recent work by Chen et
al [3], which uses depth context to improve the object pro-
posal generation. However, they focus on the class-dependent
object proposals and use estimated ground plane to reduce
their search space, which is restrictive for generic scene un-
derstanding.

In this work, we propose a novel object proposal gener-
ation pipeline, which exploits additional geometric and se-
mantic context cues to improve the recall and localization ac-
curacy of object proposals. To this end, we take a pair im-
ages from a stereo camera as input and start from a set of
initial object proposals generated from applying the Edgebox
method [6] to the left image. Our goal is to refine this set of
proposals by re-ranking them and finetune their spatial loca-
tions based on a new set of object and context information.

Specifically, we consider the following three kinds of ob-
jectness cues. First, we use the noisy depth computed from
the stero images to estimate a set of geometric features on
each object candidate; second, we design a semantic context
feature to describe the surrounding object class distribution,
which is computed from a noisy semantic labeling; finally,
we follow the Deepbox method [11] and extract a CNN fea-
ture from each object candidate. We then fuse these object
and context cues to re-rank the initial object candidates. In
particular, based on those features, we train a classifier to pre-
dict a new objectness score for each candidate, and regressors
to adjust the location of its bounding box. Fig.1 illustrates the
overview of our approach.

We evaluate our method on the KITTI dataset [19], one
of the large-scale publicly available datasets with both stereo



Fig. 1. Overview of our object proposal generation pipeline. The input are a pair of stereo images and an initial set of proposals.
We extract three types of object and context cues, and use them to re-rank the proposals and refine their locations.

images and object annotation. We show that our method im-
proves the quality of the initial object proposals significantly
and achieves the state-of-the-art performance. Our main con-
tributions are summarized as follows: 1) We propose a new
pipeline for improving object proposals based on additional
geometric and semantic context cues; 2) We design a set
of geometric and semantic context features that can be effi-
ciently computed (Section 2); 3) We systematically evaluate
our method on the KITTI dataset and achieve the state-of-
the-art recall rate with much fewer proposals (Section 3).

2. OUR APPROACH

We take as our system input a pair of stereo images and aim
to generate a set of high-quality object proposals for its left
image. Our approach consists of three stages, as illustrated in
Fig. 1. We first generate a set of initial object proposals in the
left image. Given the initial object proposals, we then com-
pute three sets of object and context features for each object
proposal, including its geometric properties, the CNN feature
and a semantic context feature. Finally, we concatenate these
features and train a classifier to re-rank as well as regressors
to re-locate those initial candidates. We now introduce the
details of each stage of our pipeline, focusing on the feature
design and classifier plus regressor training.

2.1. Preprocessing

The preprocessing stage generates a set of initial object pro-
posals, dense depth and semantic maps for computing context
features in the next stage. For the initial object proposals, we
choose the Edgebox algorithm [6] for its efficiency and good
Intersection-Over-Union (IOU) quality. We use the dispar-
ity estimation method [20] to estimate the dense depth map
and convert it into a point cloud representation according to
the camera parameters. The semantic map is computed based
on the SegNet system [21], although any deep Convnet based
method can be used here. The SegNet is pre-trained on the

CamVid dataset [22] and generates a pixel-level label map
with 12 semantic classes, which are commonly seen in street
scenes. We note that no object instance information is avail-
able from their outputs.

2.2. Object and Context Features

Given each initial object proposal, we compute three types
of features to capture its appearance, shape and its geometric
context, as well as the semantic context.

CNN Feature For each candidate bounding box, we adopt the
CNN feature to encode the object appearance. Specifically,
we extract the CNN feature in the same way as in the R-CNN
method [1]. We normalize each bounding box into a size of
224× 224 and apply the AlexNet [23] network. The network
weights are pre-trained on the ImageNet [24] and fine-tuned
on the VOC 2012 dataset [25]. We take the output from the
layer fc6 as our CNN feature, which has 4096 dimensions.

Geometric Feature To incorporate geometric property of the
object, we make use of the depth map estimated from the
stereo images. We first segment out the subset of the point
cloud using the bounding box associated with a proposal. The
subset is used to compute a 12-dimensional feature to de-
scribe the object’s geometric properties. Specifically, denot-
ing the position of a 3D point as (x, y, z), we consider the
following set of features, including mean x, mean y, mean z,
median x, median y, median z of all points in the bounding
box and the x, y and z of the center point, as well as the width,
height and depth span of all points in the box.

Semantic Context We encode the semantic context of each
object proposal by computing a semantic layout feature on
the pixel-wise semantic label map. Specifically, each pixel
is labeled into 12 classes: sky, road, road marking, building,
pavement, wall/fence, pole, vegetation, car, pedestrian, sign,
cyclist. We split the bounding-box into n × n cells (we use
n = 6 in our experiment) on the label map. For each of those



Fig. 2. The design of semantic context feature, which shows
the partition of a bounding box for computing the label his-
togram. See text for details.

cells which are next to the boundaries(4n − 4 cells in total),
we compute a label histogram. Besides that we also compute
the label histogram of the inner box whose area is a quarter
of the original bounding-box. In order to better capture con-
text information, we enlarge the original bounding box by 1.5
times in terms of area and then compute the histograms in the
same way as for the original bounding box. Finally, we con-
catenate these histograms computed from the original and the
enlarged bounding box as the semantic context feature. Fig.2
shows an example of computing the semantic context feature.

2.3. Re-rank proposals

We concatenate all the features computed from Section 2.2
and re-rank all the initial object proposals based on these fea-
tures. We adopt the random forest (RF) [26] as our classifier
for its efficiency during test. To train the random forest clas-
sifier, we build our training dataset as follows. We treat the
ground-truth bounding boxes and those proposals with ≥ 0.5
IoU overlap with a ground-truth box as positives. Those pro-
posals with ≤ 0.4 IoU overlap with a ground-truth box are
labeled as negatives. We use the held-out validation set to
optimize the hyper-parameters in the RF classifier. Our RF
classifier consists of 15 trees with a maximal depth of 20 and
at least 2 leaf nodes. The RF generates a probability score for
each proposal, which is used as the new objectness score.

2.4. Bounding box regression

Inspired by [1], we learn a bounding box regressor to fine-
tune the location of each proposal. Note that our regressors
are class-agnostic. We represent the bouning-box by its cen-
ter coordinates, its width and height, {Bx, By, Bw, Bh}. The
ground-truth box is denoted as {Gx, Gy, Gw, Gh}. We de-
fine the regression targets {Tx, Ty, Tw, Th} for the training
pair (B,G) as follows,

Tx = (Gx −Bx)/Bw, Ty = (Gy −By)/Bh (1)
Tw = log(Gw/Bw), Th = log(Gh/Bh) (2)

We learn four linear regressors with the same features as
the RF classifier. For each regressor, we estimate the weights

β by minimizing the regularized least squares objective:

β = argmin
β̂

N∑
i=1

(T i − β̂T f(Bi))2 + λ ‖ β̂ ‖2, (3)

where f(Bi) denotes the feature extracted for the bounding
box Bi, and λ is the weight for the regularization term. For
learning these regressors, we only use those proposals which
have ≥ 0.5 IoU overlap with a ground-truth box.

3. EXPERIMENTS

We evaluate our approach on the KITTI object dataset [19],
which consists of 7481 images with bounding box annota-
tions. The object classes consist of Cars, Pedestrains and
Cyclists. Similar to the setup in [3], we split the dataset into
three subsets: a training set of 3200 images, a validation set
of 512 images and a test set of 3769 images. We report the
results of object proposal generation and object detection task
on the test set.

3.1. Object proposal generation

For object proposal generation, we employ the recall vs. num-
ber of proposals and the recall vs. IoU threshold as the eval-
uation metrics. For the recall vs. the number of proposals,
we use 0.5 as the IoU threshold, above which a proposal is
treated as recalled. For the recall vs. the IoU, we use top 100
and 1000 proposals to evaluate the performance.

We first compare our algorithm against the baseline
method, Edgebox-50 [6], and the state-of-the-art, 3DOP
[3]. Fig. 3 (left) shows the recall when varying the number
of object proposals. We can see that our approach signifi-
cantly improves the recall rate. With just 100 proposals, our
approach improves the recall rate to a level above 90%, while
3DOP and EdgeBoxes only achieve 63% and 30% respec-
tively. Furthermore, with recall rate 90%, our method uses
only one tenth as many proposals as the 3DOP method, which
leads to more efficient object detection. We can also see that
the bounding box regression further improves the recall rate
of our method. This implies that the depth cue also help refine
the quality of the initial proposals.

We also show the recall rate when changing the IoU
threshold with top 100 and 1,000 proposals in Fig. 3 (middle
and right). We can see that our approach greatly outperforms
the baseline and the state-of-the-art. Interestingly, the bound-
ing box regression improves the proposals location precision
significantly. We note that 3DOP uses the object size priors
learned for each class, which are unavailable to our method.

3.2. Ablation Study

To understand the effectiveness of different features, we con-
duct the ablation study as follows. In the re-ranking stage, we
use different groups of features to train the classifier. Fig. 4
(left) shows the recall rate curves with different combinations
of our features. We can see that using the geometry features or
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Fig. 3. Comparison of our approach to the baseline and the state-of-the-art (3DOP). ’Ours*’ denotes our approach without the
bounding box regression.Left: Recall vs. Number of proposals; Middle: Recall vs. IoU Threshold (100 proposals); Right:
Recall vs. IoU Threshold (1000 proposals).
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Fig. 4. Ablation study of our features on proposal re-ranking and bounding box regression. Left: Effectiveness of features on
the object proposals re-ranking; Middle: Effectiveness of features on the bounding box regression (100); Right: Effectiveness
of features on the bounding box regression (1000).

Cars Pedestrians Cyclists
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

3DOP + Random Forest 45.74 37.79 32.48 51.62 45.57 41.24 29.96 22.41 21.30
Ours + Random Forest 52.39 44.88 37.33 52.21 46.45 41.02 23.51 21.84 20.59

Table 1. Average Precision (%) of object detection on the test subset with top 1,000 proposals. We use the class-agnostic
version of 3DOP and our approach to generate the proposals respectively.

the semantic context feature alone can improve the recall rate
greatly. All the features contribute to the final improvement
of recall performance. We also apply the same study to the re-
gression stage and show the results in Fig. 4 (middle for 100
proposals and right for 1000). We can see that the geometry
features are not very effective in the bounding box regression,
but the context feature is quite powerful. Both studies verify
the strength of the CNN feature.

3.3. Object Detection

To demonstrate the benefit of our proposal generation method,
we evaluate the performance of object detection task using
our proposals. We train a set of object detectors based on a
random forest classifier (20 trees with a maximal depth of 25
and at least 3 leaf nodes), which take the same feature set as
in Sec 2.2. We compare the results using our proposals and
the proposals from the class-agnostic version of 3DOP as the
input to the detectors. Table 1 shows the average precision

of two systems. Our proposals perform better than 3DOP’s
in the majority cases. For the category of cyclist, 3DOP uses
the learned 3D size priors, which can help get more precise
proposals, as it can be difficult to discriminate the pedestrians
from the cyclists.

4. CONCLUSION

In this paper, we propose a new object proposal generation
method for stereo images, which exploits additional geomet-
ric and semantic context cues. In addition to the CNN feature
of proposals, we design geometric features based on depth
map and a semantic context feature computed from pixel-
level scene labeling. We train an efficient classifier to re-rank
the initial object proposals, and learn a set of bounding box
location regressors to fine-tune the position of the re-ranked
object proposals. Experiments on the KITTI dataset show that
our approach achieves high recall rate with a fraction of the
initial proposals and outperforms the state-of-the-art.
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